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Introduction 

 

This paper studies the magnetic energy stored in the air space surrounding solenoidal coils and bar 

magnets.  Section 1 deals with coils where, for air-cored coils using Nagaoka’s formula, a simple 

method is given for apportioning the magnetic energy between that stored in the internal volume 

and that stored externally.  Coils having a permeable core are also considered.  Section 2 shows 

how this approach can also be used to establish the energy stored external to a permanent magnet.  

Section 3 examines the situation involving two co-located coils that are energized from separate 

power sources.  It is shown that, when the coils are energized in time sequence, the energy 

apportioned between each source depends upon the source impedances.  The conditions are 

established whereby, on application of energy to the second coil, the magnetic field gains a larger 

quantity of energy taken from the power source of the already energized first coil.  Section 4 uses 

this result to show that, when the field from a permanent magnet is enhanced by the field from a 

coil wound around it, the external field gains significant energy from within the magnet.  By 

analogy to the two-coil situation, it is argued that this energy comes from the quantum domain.  

Section 5 discusses an alternative model for the permanent magnet in which this quantum domain 

connection is more obscure.  Arguments are presented as to why this alternative model is incorrect. 

 

1.  Energy around a Coil from Nagaoka’s Formula 

 

1.1.  Air-cored coils 

 

The inductance of a single layer air-cored solenoid is given by Nagaoka’s formula 

l
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where k is Nagaoka’s dimensionless geometric factor (between 0 and 1) that depends upon the 

length/diameter ratio, N is the number of turns, l is the solenoid length and A is the area. 

 

Figure 1. Nagaoka’s Geometric factor k. 

 

Figure 1 gives k plotted against l/d for lengths l shorter than diameter d, and plotted against d/l for 

lengths greater than the diameter, thus covering any length up to the infinite solenoid. 
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Equation (1) can be expressed as 
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where RINT is seen to be the reluctance of the cylindrical air space enclosed by the coil, 
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It follows that, when carrying a current i, the total energy WTOT stored in the magnetic field as given 

by 
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can also be expressed as 
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This is the total magnetic energy stored in all space.  That total space can be divided into two 

regions, (a) the cylindrical air space having reluctance RINT enclosed by the coil and (b) the 

remaining space external to the coil.  The flux lines closing through that external space can be 

considered to flow through a reluctance REXT as shown in Figure 2.   

 

Figure 2.  Internal and External Reluctances 
 

To find the energy WINT stored within the cylindrical volume of the coil, we can use the energy 

formula for a flux Φ within a reluctance R 

2

2
R

W
Φ

=          (6) 

where the actual flux (not flux linkage) is given by 
N
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It then follows that the energy WEXT stored in all space external to the coil volume is 
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The energized coil can be considered as a mmf generator of Ni ampere-turns driving flux through 

two reluctances in series representing the internal reluctance RINT and the external reluctance REXT, 

see Figure 2.  Now since the inductance is given by (2) and also by 
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we can equate (2) and (9) to find REXT as 
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Combining (8) and (10) to eliminate RINT yields 
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which gives the external energy in the same form as (6). 

 

1.2.  Graphical method 

 

The “Magnetic Ohm’s Law” circuit shown in Figure 2 can be solved graphically as shown in the 

flux v. mmf plotted in Figure 3.  The energies stored in the two reluctances, as given by (6), (7) (8) 

or (11), are then also given by the areas of the two triangles.   

 

Figure 3.  Flux v. mmf for the Solenoid 

 

Showing this chart in the second quadrant with negative Ni may seem odd, it could equally have 

been shown in the first quadrant using positive Ni.  The second quadrant is deliberately chosen to 

illustrate the similarity to the permanent magnet features in the next section. 

 

1.3.  Coils with permeable cores 

 

It is often required to calculate the inductance of a coil wound onto a rod of permeable material, e.g. 

as in a ferrite rod antenna.  Using the reluctance RINT of the air space occupied by the ferrite rod we 

can use (10) to calculate the reluctance REXT for the external space.  The actual reluctance of the 

ferrite rod is of course RROD=RINT/µR where µR is the relative permeability.   Hence using RINT/µR in 

place of RINT in (9) we obtain 
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For high permeability, which is usually the case for ferrites, and for short rods where 
k

k
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the 1/µR term becomes negligible and the inductance is then independent of the permeability, being 

determined solely by the geometry. 
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Effectively this says RROD=0 whence all of the magnetic energy is stored in the external air space; 

that energy can be determined from (4) using the inductance given by (13) where REXT is given by 

(10).  For long rods, where the above inequality is no longer true, the total energy as given by (4) 

and (12) can be apportioned between RROD and REXT using (6). 

 

 

2.  Energy around a Bar Magnet 

 

2.1.  Solenoid Equivalent Model 

 

It is common practice to model permanent magnets by their surface current or solenoid equivalents, 

see Figure 4.  The magnetic material has a uniform distribution of magnetic dipoles yielding a 

dipole-moment volume-density M.  This is replaced with an identical volume of air, around which 

flows a surface-current density JS such that the total dipole moment Mv remains the same, where v 

is the volume.  Since 
0µ
RB

M =  the dipole moment m of the magnet is given by 
0µ

vB
m R= , where BR 

is the remanence.  The dipole moment of the surface current model is vJm S=  hence it follows that 
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Figure 4.  Bar magnet and Equivalent Models 

 

The effective ampere-turns (Ni)M of the solenoid equivalent model is then given by 
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2.2.  Energy Considerations 

 

Putting the ampere-turns of (14) in (8) we get 
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As before, RINT is the reluctance of the air space occupied by the magnet, as given by (3).  Those 

skilled in magnetic systems will recognize this reluctance as something used in the procedure for 

establishing the load line on the magnet’s BH curve.  Many people perform this procedure by rote, 

without appreciating the reason why.  As in the solenoid case shown in Figure 2, the unkeepered 

magnet can be modelled by its “magnetic Ohm’s Law” equivalent circuit as a mmf generator 

driving flux through two reluctances in series representing the internal reluctance RINT and the 

external reluctance REXT.   Figure 5 shows a graphical method for establishing the flux Φ by 

applying the REXT and RINT load-lines to the flux v. mmf chart.  Also shown is the graphical 

procedure for establishing the flux density B from the BH curve that, for magnets where there is no 

significant domain reversals, performs the same task.  It is left to the reader to satisfy himself that 

these two methods are equivalent. 

 

Figure 5.  Load-lines for (a) reluctances in series and (b) the BH curve 

 

The point being made here is that the reduction from BR due to the load-line is normally attributed 

to a de-magnetization factor, whereas there is no actual change of magnetization over that range, M 
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external reluctance yielding a different “mmf drop” (like voltage drop) across the internal RINT.  

Nagaoka’s geometric k factor, acting like the geometric de-magnetization factor, allows calculation 

for the magnet’s operating conditions.  In this case the term de-magnetization seems inappropriate. 

 

When there is change of magnetization, e.g. for a non-linear Alnico BH curve, the graphical method 

is needed since the reduction in B is then due to two different features. 

 

That a magnet’s operating point can be found by applying its mmf across the two reluctances in 

series brings into focus the presence of that mmf, it is not a math artefact.  Hence the negative H 

value of 
0µ
RB

 in the BH curve in Figure 3 is real and represents the distributed ampere-turns of all 

the atomic current circulations responsible for the magnetization.  The only reason that it is negative 

is because of our choice of where the zero for the BH curve lies, we choose to ignore that atomic 

contribution (we could have chosen the 
0µ
RB

−  point as zero and shown all the H as positive).  

Perhaps the arbitrary nature of the H values being negative is best illustrated by using (3) to 

eliminate RINT from (15), obtaining the external energy as 
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where v is the volume of the magnet.  The term in large parentheses will be recognized as the 

energy within the air volume of the magnet if the internal field is at the BR level (as it would be if 

the magnet were keepered).  Nagaoka’s k factor enables us to calculate the external energy of the 

unkeepered magnet as a fraction of this value.  We can also calculate the internal energy as another 

fraction of this value 
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Treating the energy within the magnet as being within air eliminates the nonsense that arises from 

the usual BH curve where its internal H is considered to be of opposite direction to the B, and in 

particular the perception that when H=0 the internal energy is zero. 

 

 

2.3. Energy Available to do Work 

 

It is often of interest to be able to calculate the total energy available for a magnet to do work (such 

as lift a weight) when it attracts a keeper towards itself.  At first sight (15) or (16) might be 

considered for this application, but this gives a low estimate.  A full calculation requires math 

integration as REXT reduces from the value determined from Nagaoka, when the keeper is at infinity, 

down to zero when the keeper “shorts out” the magnet.  The final result is 
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3.  Energy supplied by two coils 

 

In this section we consider magnetic energy as supplied by two coils each driven from separate 

power supplies.  We use bifilar wound coils so that they are identical, having equal inductance 

values and supplying magnetic energy to the same internal and external reluctances.  The coupling 

between the two coils is unity.  Clearly if both coils are simultaneously energized with identical L/R 

time constants, the total magnetic energy achieved in space is supplied equally by the two power 

sources.  However if the coils are energized in time sequence the perhaps surprising result is 

obtained where the first one to be energized supplies more energy.  Put simply, transformer action 

when the second coil is energized places an additional voltage transient onto the current already 

flowing in the first coil, hence extracting additional energy from its power source. 

 

Consider a solenoid to be wound with two identical coils, closely coupled, e.g. bifilar wound.  Let 

coil 1 be energized at time t1 from a high impedance current source, such as a very high voltage V1 

in series with a high resistance R1.  Its inductance gets charged with current rising exponentially 

with time constant 
1R

L
 to reach a maximum value of 
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2
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W = .  

During the charging period the voltage across the coil falls exponentially from V1 to zero, and the 

time-integral of the power pulse formed from the product of the rising current and falling voltage 

gives that same W1 value of energy supplied from the V1 source, see Figure 6. 

Figure 6.  Transients at first coil 

 

Now let coil 2 be energized at a later time t2 from a low voltage source V2 having a low internal 

resistance R2.  Because R1 is very large, its reflection via transformer action does not influence the 

charging time constant 
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Figure 7.  Transient at Second coil 

 

During this second charging phase, by transformer action, coil 1 experiences the same voltage as 

coil 2, an instantaneous rise to V2 then falling exponentially to zero, which, multiplied by the 

current I1, produces a second power pulse drawing energy from source V1.  This second energy 

pulse from V1 accounts for the third term 213 ILIW =  which applies to the total magnetic energy 

from both coils as given by 
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Figure 8 shows the voltage, current and power waveforms for the W3 pulse taken from the first 

coil’s power supply. 

 

Figure 8.  Second Transient at first coil 

 

Clearly, for large values of I1 compared with I2, the W3 term is greater than W2, thus the power 

supply to the first coil to be energized supplies most of the additional magnetic energy.  This is 

important when considering energy supplied by a magnet plus a coil since the magnet’s field 

already exists. 
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4.  Energy around a Magnet plus Coil 

 

If we now place a coil around the bar magnet, energise that coil with Ni ampere-turns, we can 

evaluate the external energy using the sum value of coil and magnet currents in (8).  We obtain 
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Expanding the squared term and using (14) we find the external energy to be the sum of three 

values 
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 is additional energy supplied by the magnet.  (23) 

The total energy supplied by the coil (both internal and external energy) is given by (5), hence the 

ratio of the externally available additional energy WEXT3 to the supplied coil energy WTOT is 
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If 
( )k

NilBR

−
>>

120µ
, which is generally the case because of the large values of effective surface 

current for magnets, then considerably more energy is transposed into space than that supplied by 

the coil current, the extra energy coming from the magnet. 

 

5.  Alternative Magnet Model. 

 

In any circuit, by Thevenin’s Superposition theorem, any constant voltage generator V of internal 

series resistance R can be replaced with an “equivalent” constant current generator I of internal 

shunt resistance R, where I=V/R.  This produces identical external voltage and current levels, but it 

should be noted that when internal power dissipation is considered the two circuits are not generally 

equivalent.  Only in the special case where the external load equals the internal resistance do the 

two versions dissipate identical power. 

 

Thevenin’s theorem can be used to create an alternative model for a permanent magnet that yields 

identical external performance, but except for the special case where the external load equals the 

internal reluctance, with different internal energy considerations.  The constant mmf generator plus 

series internal reluctance model, as described in section 2.1. is replaced with a constant flux 

generator in parallel with that reluctance.  This alternative model is preferred by some scientists 

since it offers a different energy perspective when considering an energized coil around the magnet.  

Figure 9 shows the two alternatives .   
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Figure 9.  Alternative Models for a Permanent Magnet 

 

If we now consider the case where additional mmf is supplied from an energized coil wound around 

the magnet, we obtain the two circuits shown in Figure 10. 

 

Figure 10.  Models with Coil mmf 

 

Whereas with the constant mmf model Fig.10(a) the extra external energy given by (23) comes 

from the magnet’s source mmf (Ni)M, using the constant flux model Fig.10(b) the same value of 

extra energy is seen to come from that previously stored in RINT.  This seems to eliminate any 

connection with the quantum forces driving the magnet’s mmf (Ni)M.  However what is overlooked 

in this argument is the mmf drop across RINT that applies a different value of mmf to the magnet’s 

source flux ΦM.  If in the one model (Ni)M is a quantum source of energy, supplying energy 

according to the flux, then also in the other model ΦM is also a quantum source supplying energy 

according to the mmf.  It is argued by those same scientists that a super-conducting current loop is 

an example of a constant flux source, hence the atomic current loops responsible for 

ferromagnetism should be modelled in that way.  Again the mmf is overlooked.  In the presence of a 

changing magnetic field a super-conducting loop does not maintain constant current, it’s current 

hence mmf changes so as to keep the flux constant.  Its dipole moment also changes.  An array of 

super-conducting current loops, in the presence of additional magnetic flux, will change its 

magnetization.  There is ample evidence that permanent magnets do not respond in this way.  Also 

if atomic dipoles were of this form then FMR experiments would show entirely different results and 

the well-known gyro-magnetic ratio would have little significance.  For these reasons the constant 

flux model is discarded. 
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