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Lumped Equivalent Circuits of Magnetic
Components: The Gyrator—Capacitor Approach

David C. Hamill, Member, IEEE

Abstract—In place of the conventional reluctance-resistance
analogy for forming lumped equivalent circuits of inductive com-
ponents, a permeance—capacitance analogy is advocated. In this
approach, magnetic paths are modeled by capacitive circuits and
windings are represented by gyrator two-ports. The technique is
applied to the integrated magnetics of a zero-ripple isolated Cuk
dc—de converter, allowing its electrical and magnetic circuits to
be simultaneously simulated with SPICE.

I. INTRODUCTION

IRCUITS including inductive components with multiple
windings are characterized by two types of interconnec-
tion: electrical and magnetic. The magnetic connections often
give rise to conceptual and analytical difficulties. In an attempt
to overcome them, an equivalent circuit model is sought that
represents a complex, distributed magnetic circuit by a lumped
electrical network with similar behavior. The traditional equiv-
alent circuit is the inductance model, which contains simple
inductors and ideal transformers. Unfortunately, the model is
not universally valid, and the process of obtaining it hides
important relationships among the magnetic circuit variables.
This paper first reviews traditional inductive modeling,
which is based on a reluctance—resistance analogy; then the
case is argued for an alternative permeance—capacitance anal-
ogy. In the resulting equivalent circuit, a capacitive model of
the magnetic component is linked to the extemnal electrical
circuit by gyrators, which represent windings. To demonstrate
its utility in power electronics, gyrator—capacitor modeling is
applied to a zero-ripple Cuk de—dc converter employing inte-
grated magnetics. Simultaneous simulation of the electrical and
magnetic circuits is performed with SPICE. Finally, extension
of the technique to lossy and nonlinear materials is outlined.

II. THE TRADITIONAL APPROACH

When considering magnetic circuits from the viewpoint
of electronics, it is natural to regard magnetomotive force
(mmf) as analogous to voltage and magnetic flux as analo-
gous to current. This traditional pairing results in the reluc-
tance-resistance analogy for modeling magnetic components.
The mmf produced by an N-turn winding carrying a current
of i {A} is F = Ni{A}. (Where relevant, the SI units of a
quantity are appended in braces {-}. Since N is dimensionless,
the units of mmf are properly amperes, but ampere-turns are
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TABLE 1
TRADITIONAL ANALOGS

Magnetic Circuit Electrical Circuit

mmf F{A} Voltage v{V}

Flux & {Wb} Current i{A}
Reluctance R{H!} Resistance R{Q}
Permeability p {H/m}  Conductivity o {S/m}

in common use.) mmf is visualized as a forcelike quantity that
pushes a magnetic flux ® around the magnetic circuit. The
SI unit of flux is the weber {Wb} or volt-seconds (per turn)
{V~s}. In a linear, lossless magnetic material, mmf and fiux are
proportional. Reluctance R {H™!} is then the counterpart of
resistance R {2} in an electrical circuit: in a magnetic circuit,
® = F/R, corresponding directly to Ohm’s law, ¢ = v/R.
Moreover, a sample of magnetic material of permeability
it = pofir, path length £, and cross-sectional area A has a re-
luctance of R = £/p.A, a formula that is closely similar to that
for electrical resistance, R = ¢/o A, where o is conductivity.
The traditional analogs are summarized in Table 1.

The resistance model of a magnetic component is found by
applying the reluctance—resistance analogy to each section of
the magnetic circuit. For example, Fig. 1 shows a leaky two-
winding transformer and its resistance model. The equivalent
circuit is topologicaily similar to the magnetic structure; each
winding mmf of F {A} is represented by a voltage source
of F{V}, and each reluctance of R = £/uA{H™'} is
represented by a resistance of R {§2}. The currents {A} in the
electrical circuit correspond to fluxes {Wb} in the magnetic
circuit. The inductance of a winding may be determined by
finding the effective reluctance R.g seen by the winding mmf
source; if the winding consists of N tums, its inductance is
L = N?/Reg.

If the winding currents are known, the fluxes can be
determined in a straightforward manner. However, in many
cases of practical interest, the magnetic and electrical circuits
interact, and the system has to be analyzed as a whole.
To allow this, the resistance model is converted into an
inductance model, which consists of a network of simple
inductors and ideal transformers {1], [2]. Unlike the resistance
model, the inductance model can be connected directly into
the surrounding electrical circuit. The conversion procedure
comprises two steps.

1) The dual of the resistance model is formed by applying
the laws of electrical voltage—current duality. Network loops

0885-8993/93$03.00 © 1993 IEEE



Fig. 1. Magnetic circuit of a leaky two-winding transformer and its resistance

model.
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Fig. 2. Conversion of the resistance model of Fig. 1 into an inductance
model.

become nodes, and vice versa; each voltage source F {V}
becomes a current source of F' {A}, and each resistance of
R {Q} is replaced by a conductance of R {S}.

2) A particular winding is chosen as the reference winding,
having N, turns, say. The associated current source is replaced
by a pair of terminals. The current source associated with every
other winding of N; turns is replaced by an ideal transformer
of ratio N, : N; feeding a pair of terminals. Each conductance
of R; {S} is replaced by an inductance of N?R; {H}.

Fig. 2 illustrates the two steps for the resistance model of
Fig. 1.

Although this procedure is mechanical, it is not universally
successful: if the magnetic circuit is nonplanar, the procedure
fails because, as proved by elementary graph theory, nonplanar
networks have no dual. A nonplanar network is one whose
schematic cannot be drawn without crossovers. More exactly,
a network is nonplanar if its graph contains cither of the
subgraphs of Fig. 3 [3]. In general, magnetic components
with more_than three windings are nonplanar if all possible
couplings are taken into account {2]. Fig. 4 shows an example
that could be constructed from three standard E-cores; because
it is topologically nonplanar, no simple inductance model is
possible for this component.!

A recently introduced technique [5], [6] retains the resis-
tance model, linking it to the external electrical circuit via
a “magnetic interface.” The interface implements the pair of
equations governing a winding:

dd

'U=NE

F = Ni. 1

'The restriction can be overcome by employing additional ideal transform-
ers [4], although the resulting inductance model may perhaps be difficult to
understand.
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Fig. 3. Subgraphs of nonplanar networks.

Fig. 4. Example of a nonplanar magnetic component.

A six-line SPICE netlist of the interface circuit comprises
three controlled sources, two independent sources, and an
inductor that performs the differentiation. Simultaneous sim-
ulation of the electrical and magnetic circuits is possible for
both planar and nonplanar magnetics.

Although it has served for many years, confidence in the
traditional resistance model is undermined by a simple ques-
tion: magnetic reluctances store energy, so why are they made
analogous to electrical resistances, which dissipate energy?
The objection is particularly worrying in power electronics,
where energy relations are of prime importance. At the root
of the problem is the initial choice of mmf and flux as the
“natural” magnetic circuit variables. '

A generalized energy-based network, such as an electrical,
hydraulic, or mechanical system, is characterized by effort
variables and flow variables [7] (also known as across and
through variables, respectively). The system variables are
usually chosen so that when an effort and its corresponding
flow are multiplied together, the result has the dimensions
of power. The examples of Table II illustrate the point. In
the familiar electrical case, voltage is the effort variable that
pushes charge around the circuit, giving rise to the flow
variable, current. The product of voltage and current is power,
as confirmed by a check on their units:

{Vi={3/Ck {A}={C/s}
{V}-{A}={J/s} = {W}. @
In hydraulic and mechanical systems, the product of effort and
flow variables is again power. However, with the conventional

choice of mmf and flux as the magnetic system variables, the
product of effort and flow is energy:

{A}={C/s}; {W}={V-s}={J-s/C}
{A}-{Wb} = {J}. 3
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TABLE It
EFFORT AND FLOW VARIABLES IN VARIOUS DOMAINS

Domain Effort Variable Flow Variable Effort - Flow Product
Electrical Voltage {V'} Current {A} Power {V-A} = {W}
Hydraulic Pressure {N/m?} Volume flow {m3 /s} Power {N-m/s} = {W}

Rectilinear mechanical Force {N} Velocity {m/s} Power {N -m/s} = {W}
Rotating mechanical Torque {N - m} Angular velocity {rad/s} = {s~!} Power {N-m/s} = {W}
Magnetic (traditional) mmf {A} Magnetic flux {Wb} = {V -s} Energy {V-A-s} = {J}
Magnetic (alternative) mmf {A} Magnetic flux rate {Wb/s} = {V} Power {V-A} = {W}
TABLE III
ALTERNATIVE ANALOGS
Magnetic Circuit Electrical Circuit
mmf F {a} Voltage v {V}
Flux rate & {v} Current i {A}
Permeance P {H} Capacitance C (F}
Flux o= [ddt {wb} Charge g=[idt (€}
Permeability 0= Hoftr {H/m} Permittivity € = €p€r {F/m}
Power P=F& {wW} Power P=uv {w}
Energy E= [Fd® {3} Energy E= fvdq {5

For consistency with an electrical equivalent circuit, the prod-
uct should be power, not its integral. The energy stored
in a magnetic component should equal that stored in its
equivalent circuit, but there is no energy stored in the re-
sistance model. Thus, for understanding energy relations and
dynamics in the context of power electronics, the conventional
resistance—reluctance analogy can lead to much confusion.

III. THE CAPACITANCE MODEL

In the late 1960’s, Buntenbach proposed an altemative
analogy [8}-[10] in which mmf is retained as the magnetic
effort variable, but the rate-of-change of flux (d®/dt = <I>)
is chosen as the flow variable. It is convenient to call &
the flux rate; its units are webers/second or volts (per turn)
{V}. The product of effort and flow variables is then power.
In constructing an electrical equivalent circuit, an analogy is
drawn between mmf and voltage as effort variables and flux
rate and current as flow variables. In the new system, magnetic
flux is analogous to electric charge, not electric current. Just
as voltage pushes charge around the electrical circuit causing
a flow of current (i = dg/dt), so mmf pushes flux around the
magnetic circuit, causing a flow of flux rate (& = d®/dt).

With the new variables, magnetic permeance becomes anal-
ogous to electrical capacitance. This may be seen as follows:
® = F/R = PF, where P{H} = 1/R is permeance;
hence, ® = P dF/dt. This differential equation corresponds
to that governing capacitance in an electrical circuit, i =

C dv/dt. The formula for calculating permeance, P = pA/¢,
also corresponds to that for capacitance, C = €A/¢, where
€ is permittivity. A magnetic structure may be represented
by a topologically similar capacitance model, each lumped
permeance of P {H} corresponding to a capacitance of P {F}.
In this respect, the capacitance model follows.the resistance
model, but with capacitors in place of resistors; however, the
quantity and distribution of energy within the magnetic circuit
are now correctly represented in the model. The alternative
analogs are summarized in Table III.

IV. WINDINGS AS GYRATORS

A distinctive feature of Buntenbach’s approach is the way
in which windings are treated. A winding may be thought of
as a two-port clement that links the electrical and magnetic
circuits. An N-turn winding relates variables v and i at the
electrical port to variables F’ and ® at the magnetic port:

v=Nd
i=F/N. “)

Thus, the electrical effort variable v is proportional to the
magnetic flow variable <i>, while the electrical flow variable % is
proportional to the magnetic effort variable F. A relationship
where effort and flow are exchanged is characteristic of a
gyrator, an ideal, lossless, two-port electrical circuit element
[71, [11). With voltage and currents defined as in Fig. 5, it is
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Fig. 5. The gyrator two-port.

Fig. 6. Reference directions of electrical and magnetic circuit vaﬁables.

governed by the equations

m = ’I‘iz
i1 = va/T. (5)
(The reference direction for iy adopted here is the opposite of
the usual two-port convention but is more convenient where
energy transfer is of interest.) The quantity r {2} is termed
the gyrator modulus, or gyration resistance. The gyrator is a
more fundamental circuit element than the ideal transformer:
an ideal transformer can be produced by cascading two ideal
gyrators, but a gyrator cannot be produced from transformers
[11].

An appropriate alias for the gyrator might be the “dualizer’:
by interchanging the roles of voltage and current, a gyrator
turns an impedance into its dual. When an impedance Z is
connected to one of its ports, an impedance of 72/Z is seen
at the other; for example, when a 1 uF capacitor, impedance
Z = 10%/jw, is connected to a gyrator of modulus 1042, it
appears at the other port as an impedance 102/Z = 107* juw,
i.e., an inductance of 100 pH. Comparing the winding and
gyrator equations, (4) and (5), it is seen that an N-turn
winding acts as an N-§ gyrator. (Although N is physically
dimensionless, when electrical variables are substituted for the
magnetic ones, a change of units occurs, and N must be
in ohms for dimensional consistency.) The inductance of a
winding may be determined by finding the effective permeance
P.g loading the corresponding gyrator; the inductance is then
calculated from L = NZ?P.g. The notion of an effective
permeance will already be familiar to magnetics designers as
the inductance factor A, used to characterize core assemblies.

Fig. 6 sets out the reference directions for the electrical
and magnetic variables associated with a winding and its
equivalent gyrator. These reference directions are compatible
with the conventional right-hand rule: with the right thumb
pointing in the reference direction of i, the curved fingers
point in the reference direction of .
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Fig. 7. Gapped-core inductor and its gyrator—capacitor model.

Ideal gyrators are easily implemented in a circuit simulator
such as SPICE in two different ways, each of which involves
a pair of controlled sources. The first method employs a pair
of current-controlled voltage sources (CCVS). The gyrator

equations (5) may be written as v; = rig,v2 = 7¢; and
implemented in SPICE, e.g., for r = 10}, as

Vol 15

Vo2 63

H1 52V02 10
H2 64V01 10.

Zero-voltage sources V01 and V02 are used as current sensors
because standard SPICE does not allow the current through
a CCVS to be sensed directly. The second method uses a
pair of voltage-controlled current sources (VCCS). The gyrator
equations are recast as i; = guvg,iz = gv1, where g = 1/r.
The modified equations are implemented in SPICE, e.g., for
g =018, as

Gl 1234 01
G2 4312 01.

Although slightly more complex, the CCVS version is usually
preferable for magnetic modeling purposes for two reasons.
First, it allows the series connection of mmf’s, corresponding
to tightly coupled windings, whereas series-connected VCCS’s
would suffer from current contention problems. Second, N
appears directly as an integer in the listing of the CCVS
version rather than as 1/N, which is less convenient and may
be prone to entry errors.

V. EXAMPLES

The gyrator-capacitor approach is illustrated next by two
simple examples. In each case, the equivalent circuit is formed
from the magnetic circuit in a single step.

1) Gapped-Core Inductor: The core in Fig. 7 has perme-
ability pop., cross-sectional area A, path length £, and
gap length £,, and is wound with N turns. Therefore, the
permeance of the core is P, = pou,.A/f. and that of the
airgap is P, = poA/f,, neglecting fringing. In the gyra-
tor—capacitor model of the assembly, the effective permeance
loading the gyrator corresponds to the series combination of
two capacitors, so the inductance seen by the external circuit
is L = N*/(1/P. + 1/P,).

2) Two-Winding Transformer: Fig. 8 shows a gyrator—
capacitor model of the leaky transformer treated in Figs. 1 and
2. If required, the open-circuit and short-circuit inductances
of a winding may be found by a method similar to that of
the previous example. For instance, if the N winding is



HAMILL: LUMPED EQUIVALENT CIRCUITS OF MAGNETIC COMPONENTS

°_le

O

Fig. 8. Gyrator—capacitor model of the transformer of Fig. 1.
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Fig. 9. Cuk converter with integrated magnetics; the output is nominally
5 V, 0 A. S; operates at 500 kHz with a duty factor of 0.3.
Vi =28V,Cy =5uF,Cy = 20puF,C3 = 10uF,R; = 0.5Q.

short circuited, the N; winding has an inductance of L; =
NZ/(1/Py +1/Ps+1/Py). (A gyrator mirrors a short circuit
as an open circuit, and vice versa.) In the limiting case when
P; to P4 become infinite and the leakage permeance Ps goes
to zero, the circuit reduces to a pair of cascaded gyrators, i.c.,
an ideal transformer of ratio N; : No.

The interested reader may care to sketch an equivalent
circuit of the nonplanar component of Fig. 4.

VI. MODELING AND SIMULATION OF A CUK CONVERTER

As an illustration of the technique in a practical system
with electrical and magnetic parts, it is now applied to a
complex dc—dc converter: an isolated Cuk converter with
integrated magnetics, capable of zero-ripple operation. Certain
dc—dc converters may be miniaturized by combining several
magnetic components into a single assembly. In the isolated
Cuk converter, two chokes and a transformer may be integrated
into a single structure. Moreover, given the proper magnetic
coupling between windings (the zero-ripple condition), the
choke ripple currents can be nulled out, resulting in smooth dc
at the converter’s input and output terminals. Despite several
published studies, the zero-ripple mechanism remains obscure
to many engineers; this poor understanding seems to be related
to the interaction of the magnetic and electrical circuits.
Simulation may help to clarify matters, given a suitable
model of the integrated magnetics. With this aim in mind,
a gyrator—capacitor model is developed and then combined
with the electrical circuit, allowing SPICE simulation of the
complete converter.

In an entertaining paper [12], Cuk and co-workers outlined
the design of the converter shown in Fig. 9. The core consists
of a pair of half-thickness EE-22 cores of H7C4 ferrite
(TDK), gapped by a 0.3 mm spacer. The permeances can be
calculated approximately by partitioning the magnetic paths
into a number of lumped elements. There are many ways to do

101

]
6.0
j"nl Ps! Pai

Fig. 10. Core and gap geometry used to calculate permeances. All
di ions are in millimeters

TABLE IV
CORE AND GAP PERMEANCES CALCULATED FRoM FiG 10
A{mm?} €¢{mm} fr P {aH}
Pe1 4.0 x 3.0 15 2000 4020
Pe2 40 x 3.0 73 2000 4130
Pe3 6.0 x 3.0 73 2000 6200
Pa1 43 x 33 0.3 1 59.4
Pg2 63 x 3.3 0.3 1 87.1
Py P2 Pa Pa
56.1nF T 84.7nr']' S6. lnF_L 36.70F T
6a
16n T) 8n
q 3‘q- (
' I+
1 2 3 q l 5 [3
Fig. 11. Simplified gyrator—capacitor model of the Cuk converter’s

integrated magnetics.

this, but for present purposes, the scheme shown in Fig. 10 is
satisfactory, and has the virtue of simplicity. The permeances,
estimated from the core geometry, are listed in Table IV. . The
gap permeances Py and Pgo allow for fringing by the usual
expedient of increasing each core dimension by the gap length
when calculating A. Because some of the core permeances
appear in series, they may be combined:

1
2/73,;1 + 2/'P02 + 1/Pgl

1
= Pt 1/Pg 84.7nH. O]
As expected, the gap permeances dominate. Replacing P to
P3 by capacitors and adding winding gyrators of 16, 6, 3, and
8 2, with due regard to their phasing, the gyrator—capacitor
equivalent circuit of Fig. 11 is obtained.

One permeance that is not obvious from the core geometry,
yet is important in the operation of the converter, is the
leakage path for center-limb flux that bypasses the outer limbs,
represented in Fig. 11 by P,. Because the path is through air,
P, is difficult to calculate. However, in this instance its value
can be deduced because the converter is known to satisfy
the zero-ripple condition: the transformer-to-choke coupling
coefficient must equal the transformer-to-choke turns ratio (for
both the input and output circuits). The coupling coefficient is

Pr=P3= =56.1nH (6)

Pa
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Fig. 12. Start-up waveforms of the Cuk converter, simulated with PSpice.
Top to bottom: voltage across Ry ; voltage across Sy; current in input-choke
winding; current in output-choke winding; flux densities {T} in LH limb,
center limb, and RH limb of core.

the proportion of center-limb flux rate that links each outer
limb. In the equivalent circuit of Fig. 11, the 6 2 gyrator
produces a flux rate that flows through P,. With the other
windings open circuit, the flux rate divides among Py, Ps3, and
‘P;. Elementary circuit theory allows the proportion flowing
through P; to be found, giving the coupling coefficient as
k = P1/(P1 + Ps + Ps4). Equating k to the turns ratio of
0.375 (for zero ripple), capacitance Py is calculated as 36.7
nF. If P, were neglected, k¥ would be 0.5 and the zero-ripple
condition would be violated.

In the PSpice? simulation, S; was a VSWITCH device that
could be replaced by a transistor in other versions of SPICE. A
series 50 uF + 102 damping network was added across C} to
speed convergence to the steady state. A 1 Gf2 resistance was
added between ground and the all-capacitor node to prevent
it from floating. (The PSpice netlist is available from the
author.) Simulated waveforms of the start-up transient are
shown in Fig. 12, which covers 100 switching cycles. Very
little switching-frequency ripple current is visible in the input
and output choke windings, confirming zero-ripple operation.

The flux in any permeance may be observed by integrating
the corresponding capacitor current using the Probe facility of
PSpice. For instance, to see the flux in the center leg Pa,

2PSpice® and Probe™ are trademarks of MicroSim Corporation, Irvine,
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the current I(CP2) is integrated. The flux {Wb} is then
numerically equal to the charge {C}. To find the flux density,
the flux value is divided by the appropriate cross-sectional
area. The simulated flux-density excursions approach 400 mT,
indicating that transient core saturation at start-up may be
a problem in the published converter design. As with any
integration, the proper initial conditions must be set; here,
the capacitor voltages are initially zero, as there is assumed
to be no flux prior to start-up. This remark aiso applies to
the magnetic interface of [S], [6], where the integration is
performed at run time, rather than by postprocessing.

VII. EXTENSION TO NONIDEAL CASES

Real magnetic materials suffer eddy-current losses due
to their finite electrical resistivity. Buntenbach showed that
conductive magnetic materials are properly modeled under the
permeance—capacitance analogy by a distributed RC network
[8). The saturation and hystersis properties of real magnetic
materials at high field excursions may also be included:
to model a saturating ®(F) characteristic, the capacitors
representing core permeances are given a nonlinear g¢(v)
characteristic, while hysteresis may be modeled, to a useful
approximation, by placing a nonlinear resistance in series with
the capacitor to give a sigmoid ®(F') loop. It is planned to
publish further details in a future paper.

VIL
Buntenbach’s original work on gyrator—capacitor modeling
seems to have been largely overlooked. This is a pity because
it can bring considerable advantages to the understanding
and simulation of magnetic components, for long a problem
area for power electronics engineers. The gyrator—capacitor
approach is conceptually straightforward and easy to apply
because the equivalent circuit is topologically similar to the
magnetic component it models. The method can handle both
planar and nonplanar magnetic structures, and may be ex-
tended to encompass lossy and nonlinear magnetic materials.
Unlike traditional modeling, magnetic energy relations are
preserved in the equivalent circuit. Gyrator—capacitor models
are easily incorporated in simulations, proving particularly
valuable for complex_ electrical-magnetic systems such as
power converters with integrated magnetic components. With
all of these advantages, the gyrator—capacitor approach de-
serves to be more widely adopted in power electronics.

CONCLUSION
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PSpice LISTING

This netlist was used to produce the waveforms of Fig. 12 of the paper
“Lumped equivalent circuits of magnetic components: the gyrator-capacitor
approach” by D.C. Hamill.

Cuk Converter with Integrated Magnetics

* Integrated magnetics:
X112 3 45 6 INTMAG

* Input section:

VI 1 0 DC 28

S1 2 0 10 O SWITCH

.MODEL SWITCH VSWITCH

+ (VON=1 VOFF=0 RON=0.1 ROFF=100K)
Cl 305U

RDAMP 3 100 10.0

CDAMP 100 O 50U

* Qutput section:
C2 4 0 20U

D1 O 5 DIODE
.MODEL DIODE D
C3 6 0 10U

RL 6 0 0.5

* Drive for switch, fs=500kHz, D=0.3:
VDRIVE 10 0 PULSE(O 1 O 50N 50N 600N 2U)

* Transient analysis:

.OPTIONS ITL4=30 ITL5=0 RELTOL=0.01
.TRAN 200N 200U 0 200N

.PROBE

.SUBCKT INTMAG 12 3456

* Integrated magnetics subcircuit

* External nodes:

* 1-2: input choke winding

* 2-3: primary transformer winding
* 4-5: secondary transformer winding
* 5-6: output choke winding

* Permeances Pl through P4:
CP1 11 13 56.1N

CP2 14 13 84.7N

CP3 19 13 56.IN

CP4 13 0 36.7N

* To prevent node 13 floating:
RFIX 13 0 1G

* Input choke winding
* 16 turns, nodes 1-2:
VSi1 1 9

VSi2 10 11

Hil 9 2 VSI2 16.0
H12 10 O VSI11 16.0



* Primary winding

* 6 turns, nodes 2-3:
VS21 2 12

VS22 15 14

H21 12 3 VS22 6.0
H22 15 16 VS21 6.0

* Secondary winding
* 3 turns, nodes 4-5:
VS31 16 17

VS32 18 5

H31 17 O VS32 3.0
H32 18 4 VS31 3.0

* Qutput choke winding
* 8 turns, nodes 5-6:
VS41 19 20

Vs42 21 6

H41 20 O VS42 8.0
H42 21 5 VS41 8.0

.ENDS INTMAG

.END



