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Evaluation and Measurement of Complex Permeability 
 

Note1.  There are two different symbols for representing imaginary numbers in common use, 

one using the symbol i while the other uses j, both have the significance of √(-1).  Because of 

potential confusion with the use of i for current, the following paper uses the symbol j. 

 

Note 2.  The amplitude of a phasor can be expressed as a peak value, a peak-to-peak value, or 

a RMS value.  In the following equations it does not matter providing that whichever is 

chosen is used consistently throughout. 

 

Note 3.  In the following paper use is made of the reluctance RAIR of the air space occupied by 

the magnetic core material.  Although this feature is commonly used for permanent magnets 

in order to establish a load-line, it is not generally used for soft materials.  It has the advantage 

of separating out the relative permeability µR from the usual reluctance value thus making the 

equations more readily understandable. 

 

1.  On Complex Permeability 

 

For a closed magnetic circuit (no air gaps, e.g. a ring core), the flux Φ is related to the mmf Ni  

and the reluctance R by magnetic Ohm’s Law 

 
R

Ni
=Φ         (1) 

where R is given by 

 
A

l
R

R 0µµ
=        (2) 

A is the cross section area of the core, l its magnetic length and µR the relative permeability.  It 

is convenient to make use of the reluctance RAIR of the air space occupied by the core given 

by 

 
A

l
RAIR

0µ
=        (3) 

so that we can express (1) in the form 

 R

AIRR

Ni
µ=Φ        (4) 

 

1.1.  Series Representation 

 

At high frequencies a phase shift between Ni and Φ occurs which is accounted for by making 

µR complex  

 ''' ssR jµµµ −=       (5) 

(the suffix s denotes the series feature of the equivalent LR circuit as seen below) so that (4) 

becomes 

 )'''( ss

AIR

j
R

Ni
µµ −=Φ       (6) 

This gives us the two components of Φ, 
AIR

s

R

Ni'µ
 being the flux that is in phase with the current 

while 
AIR

s

R

Ni''µ
 is a component that is phase retarded by 90°, see figure 1. 
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Figure 1.  The two components of Flux 

The voltage V across the coil is given by 
t

NV
d

dΦ
= .  Differentiation involves multiplication 

by jω (multiplication by j produces a 90° CCW rotation of the vector), hence from (6) we 

obtain 

 )'''(
2

ss

AIR

j
R

iN
V µµ

ω
+=      (7) 

 

Thus we have 

AIR

sLOSS
R

iN
V

2

''ωµ=       (8) 

as the voltage component that is in phase with the current.  The ratio
i

VLOSS  represents a loss-

resistance value 
AIR

s
R

N
2

''R ωµ=  in series with the inductance of the coil.  We also have 

AIR

sIND
R

iN
V

2

'ωµ=        (9) 

as the voltage component that is phase advanced by 90°.  The ratio
i

VIND

ω
 is of course the 

inductance value 
AIR

s
R

N
2

'L µ= . 

We see that the voltage measured across the coil is what we would get across a circuit 

consisting of L and R in series, figure2. 

 

Figure 2.  The two components of Voltage 
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1.2.  Parallel Representation 

 

There is an alternative version of complex permeability where the equivalent circuit LR is 

parallel.  Here in place of (5) we have for µR 

 
'''

1

''

1

'

11

ppppR

j

j µµµµµ
+=−=     (10) 

(Note the paper “Soft Ferrites and Accessories” referenced by Graham has an error in that the 

j symbol is missing!) 

Putting this in (4) yields 

 













+Φ=

''' p

AIR

p

AIR R
j

R
Ni

µµ
     (11) 

Thus, relative to the flux Φ, the applied mmf appears to have two components as shown in 

figure 3. 

Figure 3.  The two components of mmf 

 

If we now differentiate the flux vector (multiply by jω) to get a reference voltage vector we 

get the following diagram, figure 4. 

 

 

Figure 4.  The two components of current 

 

The in-phase current iR obtained from the j component of (11) is that current which would 

flow through a parallel resistance 
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p
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= , while the quadrature component iL is the 

current that would flow through the parallel inductance 
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2.  Measurement Considerations 

 

When we perform a measurement we will obtain a phase angle α between voltage and 

current, figure 5. 

 

Figure 5.  Measured data 

 

If there is no air gap in the core, we can derive the series values of complex permeability 

directly.  We need to derive the in-phase and quadrature components from the measured 

voltage VM .  Using αcosMLOSS VV =  for the in-phase component and equating this with (8) 

we obtain 

 
iN

RV AIRM

s 2

cos
''

ω

α
µ =       (12) 

Similarly using αsinMIND VV =  for the quadrature component and equating with (9) we get 

 
iN

RV AIRM

s 2

sin
'

ω

α
µ =       (13) 

 

3.  Correction for an air gap. 

 

If the magnetic circuit has an air gap, then (1) must be replaced by 

 
GAPRR

Ni

+
=Φ        (14) 

where the gap reluctance is obtained from the gap width g as 

 
A

g
RGAP

0µ
=        (15) 

Equation (4) becomes 

 

GAP

R

AIR R
R

Ni

+

=Φ

µ

      (16)  

This is best solved using (10), the parallel representation for µR, giving 

 

GAP

p
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p

AIR R
R

j
R
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"' µµ

     (17) 

which can be manipulated into 
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This yields the current component that is in-phase with the voltage as 
"

R

p

AIR

N

R
i

µ

Φ
=   

Equating this with the in-phase current αcosR Mii = as measured, and using 
N

VM

ω
=Φ  we get 

the wanted value of  

 
αω

µ
cos

"
2

M

AIRM

p
iN
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=       (19) 

Similarly equating the quadrature component 




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
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+

Φ
= GAP

p

AIR R
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N
i

'
L

µ
 with the measured 

current αsinL Mii =  yields 

GAPMM

AIRM

p
RViN

RV

−
=

αω
µ

sin
'

2
.      (20) 

Figure 6 shows the measured current components against the measured voltage. 

 

 

Figure 6.  The two current components 

 

[Note that by putting RGAP=0, (19) and (20) yield the parallel complex permeability from 

measurements on a core with no air gap.] 

 

To convert these measurements into the series equivalents we can use the relationships 

δ

µ
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2tan1
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2
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"

+
=

p

s   

but first we have to calculate the value of tanδ that applies to only the core material [we must 

not use the loss angle δ=(90°-α) as measured with the air gap present] .  This is given by the 

ratio of (20) to (19) as 

GAPMM

M
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    (21) 
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